
Partial Solution Set, Leon §5.5

5.5.2b We have u1 =
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(
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. Let x =

(1, 1, 1)T . Write x as a linear combination of u1, u2, and u3, and use Parseval’s formula
to compute ||x||.
Solution: We know from part (a) that [u1,u2,u3] is an orthonormal basis for R3. By
Theorem 5.5.2, we know that

x = (xTu1)u1 + (xTu2)u2 + (xTu3)u3

=
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√
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By Parseval’s formula, ||x|| =
(

4
18

+ 25
9

)1/2
=
√

3.

5.5.3 We are given S, the subspace spanned by u2 and u3 of the preceding exercise, and
x = (1, 2, 2)T . We are to find the projection p of x onto S, and to verify that p−x ∈ S⊥.

Solution: The projection is

p = (xTu2)u2 + (xTu3)u3

=
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1√
2
u3

=
(
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So p − x = ( 5
18

, 5
18

,−10
9
)T . It is easy to show that p − x ∈ S⊥, by showing that it is

orthogonal to each of u2,u3.

Note: A close look at the computation by which the projection was obtained is consistent
with the observation (Corollary 5.5.9) that the projection operator is UUT , where U in
this case is the matrix whose columns are u1 and u2.

5.5.5 Let u1 and u2 form an orthonormal basis for R2, and let u be a unit vector in R2. If
uTu1 = 1

2
, determine the value of |uTu2|.

Solution: Since u is a unit vector, and since u1 and u2 form an orthonormal basis for
R2, then by Parseval’s formula we know that (uTu1)

2 + (uTu2)
2 = 1. Given uTu1 = 1

2
,

it follows that (uTu2)
2 = 3

4
, so |uTu2| =

√
3

2
.

5.5.6 Let {u1,u2,u3} be an orthonormal basis for an inner product space V , and let

u = u1 + 2u2 + 2u3 and v = u1 + 7u3.

Determine the value of each of the following:



(a) 〈u,v〉
(b) ||u|| and ||v||
(c) The angle θ between u and v.

Solution:

(a) By Corollary 5.5.3, 〈u,v〉 = 1 + 0 + 14 = 15.

(b) By Parseval’s formula, ||u|| = (1 + 4 + 4)1/2 = 3, and ||v|| = (1 + 0 + 49)1/2 = 5
√

2.

(c) Using our results from (a) and (b), we have

θ = arccos
15
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√

2
= arccos

1√
2

=
π

4
.

5.5.14 Let u be a unit vector in Rn, and let H = I − 2uuT . Show that H is both orthogonal
and symmetric and hence is its own inverse.

Proof: The symmetry of H follows from the symmetry of I and the symmetry of uuT ,

i.e.,
(
uuT

)T
= uT T

uT = uuT , along with the fact that the sum of symmetric matrices

is symmetric. To show that H is orthogonal, we show that HT H = I:

HT H = ((I − 2uuT )T (I − 2uuT )

= IT I − 4uuT + 4uuTuuT

= I2 − 4uuT + 4u
(
uTu

)
uT

= I − 4uuT + 4uuT

= I.

But if H is both orthogonal and symmetric, then H−1 = HT = H. 2
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5.5.17 Show that if U is n × n orthogonal, then u1u
T
1 + u2u

T
2 + · · · + unu

T
n = I.

Solution: Since U is orthogonal, then (see exercise 10 in this section) so is UT , i.e.,
UUT = I. But then

I = UUT

=
[

u1 u2 · · · un

]


uT
1

uT
2
...

uT
n


= u1u

T
1 + u2u

T
2 + · · · + unu

T
n ,

and the result follows. 2

5.5.19.b.ii Let A =


1/2 −1/2
1/2 −1/2
1/2 1/2
1/2 1/2

 .

Solve the least squares problem Ax = b for b = (1, 2, 3, 4)T .

Solution: Since the columns of A constitute an orthonormal set, it follows that AT A = I,
and the normal equations reduce to

x̂ = ATb =

[
1/2 1/2 1/2 1/2

−1/2 −1/2 1/2 1/2

] 
1
2
3
4

 =

[
5
2

]
.
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